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The convergence of Roe’s scheme for the non-linear scalar wave equation to a weak 
solution of the Cauchy problem is studied and a modification is indicated which makes the 
scheme entropy satisfying. 

1. INTRODUCTION 

Recently Le Roux [ 1 ] and Sanders [ 21 have proved the convergence of schemes for 
the non-linear scalar wave equation 

u, + f(u), = 0. 

In this paper we give a similar proof of convergence for the scheme of Roe ]3]? 
showing that this scheme converges to a weak solution of the Cauchy problem for 
general f(u). 

Section 2 contains a description of the problem and of the difference scheme. Some 
preliminary results are stated in Section 3 and the main convergence theorem is 
proved in Section 4. Entropy violation is discussed in Section 5, and comments are in 
Section 6. 

2. THE PROBLEM AND THE DIFFERENCE SCHEME 

(a) The Problem 

We consider the equation 

u, + Lf@>lx = 0 

for (X, t) in iFi X (0, T), T > 0 and f in C’(R), with 

u(x, 0) = u&) 
135 

(2.1) 

(2.2) 
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for x in iR and u0 in Lm(lR), assumed to be of locally bounded variation on IR and 
therefore satisfying, for all real S, 

VR>O, lu,,(x + 6) - u,(x)1 dx < C(R) (61, (2.3) 

where C is an increasing function on [0, co), independent of 6. 
The Cauchy problem associated with (2.1) and (2.2) is to find a bounded function 

24 which satisfies (2.1), (2.2). A weak solution to the Cauchy problem is a function u 
in L”j(lR x (0, T)) which satisfies an integral form of (2.1), namely, 

for all test functions y in C” (R X [0, T)) of compact support in IR X [0, T). 
We consider the approximations generated by the finite difference scheme of Roe 

[3] and discuss their convergence to a weak solution of the Cauchy problem. 
Let Ax be the spatial grid size, with 0 < Ax < Axe, and At be the time grid size, 

related to Ax by the fixed positive number 1 through 

In a neighbourhood of the gridpoint (k Ax, y1 At) define the rectangle 

I, x J, = ((k - 4) Ax? (k + 4) Ax) x ((n - ;) rl Ax, (n + +) 1 Ax) (2.6) 

for k E Z, n E N and n <IV= [r/1 Ax] + 1, where [v] denotes the integer part of y. 
We approach a weak solution of (2.1), (2.2) in the sense of (2.4) by a piecewise 

constant function ud defined on IR X (0, T) by 

24,(x, t) = 24; for (x, t) E Ik x J,, , (2-V 

where the initial condition (2.2) is projected onto the space of piecewise constant 
functions by the restriction 

(b) The Difference Scheme 

The values U: are calculated as follows (see [3]). (For brevity we write 

uk = u;, Uk = g+l 
k (2.9) 

as long as there is no danger of confusion.) 
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Let I’~- 1l1 be the approximation 

to the CFL. number in the cell IkP1lz (see (2.6)) where fk = f(u,) and &I ,1 = 
f, - fk- 1. Let also 

sk- I/2 = sgn(v,- IQ> (2~llj 

be the sign of vkP ,iz 3 and define 

to be the flux increment or fluctuation in the cell IkeL;:. 
We obtain a first-order-accurate scheme when the quantity $k-,,.Z is added to the 

value of u at the downwind end of the cell over the time step At. (If rk ~, Iz = 0, then 
gk- I,z = 0, so no ambiguity arises.) This is the first-order upwinded scheme, which 
can be represented graphically as shown in Fig. 1. 

Now let 

k’=k-SkpliZ, ak-l;? = +(I - IL’k-l:2/) (2.13) 

and define the quantity 

b 
_ jminmod {ak-L/24k-,L:2,ak’--1/2$k’--1/2}, I.‘k-1;2 ’ vk’-l/2 a0 (2.14a) 

k-1!2- ifl l?k-l12 ’ $‘k’- 112 < 0, (2.14-b) 

where the operator minmod selects the argument with minimum modulus; (214bj 
corresponds to the positions of shocks or expansions. 

If b k-112 is transferred across the cell against the stream direction we generate a 
scheme which is second-order-accurate at all points except for discontinuities of the 
solution [ 91. The scheme may be identified as either the Lax-Wendroff scheme f4] or 
the upwind scheme of Warming and Beam [5] depending on the choice in (214a), 
which switches between the two. The transfer of b,- L,,2 may be regarded as an antidif- 

FIG. 1. First-order scheme. 
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fusion step (see [l]), the complete algorithm (represented graphically in Fig. 2) being 
written as 

where 

Uk = uk + it1 - sk+1,2) #k+l,‘2 + t<’ + sk4,2) @k-1,2 

- sk-1/2 b k-1/2 + sk+1/2 b k+1/2, (2.15) 

sk- l/2 = sidvk- lj2)s (2.16) 

In subsequent work it will be convenient to define two ratios ,L?,-,,, and ,f3;- 1/29 
namely, 

,$-I,2 = bk-;‘2 , 
ak-1/2 k-112 

(2.17) 

which, from the definition (2.14), have the properties 

IPk--l,ti < I, IPL;21 < 1. (2.18) 

3. PRELIMINARIES 

We now prove two lemmas and quote two theorems which will be used in the proof 
of the main convergence theorem in Section 4. The lemmas are proved for a 
difference scheme of the general form (3.1) below, which is non-linear through the 
presence of data-dependent coefficients and includes the scheme in Section 2 as a 
special case. 

LEMMA 1. A difference scheme in the form 

ilk = uk + tk+I,?#k+1,2 + <k-1,2$k-1,?, (3.1) 

where #,&,2 is defined by (2.12) and tk+1,2, <k-1,2 may be data dependent (including 
dependence on the fs), satisfies the local bound 

inf(uk-,,uk,uk+,}~Uk~sup{Uk-l,Uk,Uk+l} (3.2) 

time t 

l!?’ O b,Z < 0 

FIG. 2. Second-order scheme. 
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if the following inequalities are satisfied: 

ProoJ 

11k=Uk+5k+li2~kfI!2frk-lj2Qk-1,‘2 
= Uk--l{~k--l/2Vk--1,f2i 

+‘,{I +rk+L!21’k+1,.2-rk-,i?Vk~,:2i +“k+li -~k+,.‘Z~‘k+,~?~~ (3.4) 

If the inequalities (3.3) are satisfied the coeffkients of the u’s are non-negative and we 
obtain 

Uk < {~k-,;‘Zvk-1!2} &,,a~ + I1 +tk+,;2Vk+i.‘? -ikb,;2L’k-1..2} u,,, 

+ {-~k+L;Zvk+2/2i Umax’ 

from which uk < umaw, where 

u max =Sup(Uk-,.Uk,++,j‘ 

Similarly, tlk > u,,,~“, where 

This completes the proof. 

LEMMA 2. A difference scheme in the form (3.1) conserves local bounded 
variation irt the sense 

lkl <K Ikl<Ktrr 

for all K > 0 if the following inequalities are satisJied. 
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ProoJ: 

Uk+l k- 
-u -“k+l -‘k + ~k+dk+W + (<k+1,2 - tk+1,2) $k+1,? - <k--1/2#k-1,? (3.7) 

= i-~k+d’k+3,2} 6uk,,,, 

+ {l -(~k+1,?-~k+1,2)Vk+1,?~~Uk+l,Z+ (rk-1,21’k-l,?}8uk-1,2. (3.8) 

Taking absolute values and summing over ]k] <K, we obtain 

Ikl<K 
-UklG c (I-rk+L,Z”k+1!?I+11-(ik+1,‘2-rk+,i2)Vk+,/ZI 

Ikl <K 

+ I~k+1dk+L,ZI~ IUk+l -“k/ 

+ I-tK+3/2’K+3j?I b1K+2-uK+,I 

+ li~K-l,?y-K--l/ZI I”-K - u-K-lj (3.9) 

using summation by parts. If the inequalities (3.6) hold we may remove the modulus 
signs in the coefficients, obtaining 

Ikl <K Iki<K+l 

(3.10) 

Repeated application gives (3.5) as required. 
This completes the proof. We shall show later that the difference scheme of 

Section 2(b) satisfies the conditions of Lemmas 1 and 2. 
We now quote Helly’s Theorem (see [6, pp. 29-30]), which will be required in 

Section 4. 

HELLY'S THEOREM. Let the sequence of functions {g,(x)}? be of uniformly 
bounded variation in a <x < b and such that 

I g,Wl < A (n = 0, 1, 2,...) 

for some constant A. There then exists a set of integers 

n, < n, < n2 < -.- 

and a function g(x) of bounded variation in a < x Q b such that 

lim g&y) = fir(x) 
i-m 

(a < x < b). 

That is, given a sequence of functions which are uniformly bounded and of uniformly 
bounded variation on an interval, it is possible to extract a subsequence which 
converges to a function of bounded variation in L’. 

Finally, we quote the Lax-Wendroff Theorem for difference schemes written in 
conservation form [4], which will also be used in Section 4. 
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THE LAX-WENDROFF THEOREM. Consider a difference scheme of the form 

Uk = uk - A@,+ 112 - h,- 1!2)* 
where 

h k+1i.2=h(U~k+l’“., uk) 

and, for consistency with (2.1), 

h(u,..., u> = f(u)* 

Suppose that, as Ax, At tend to zero, the solution v(x, t) produced by the scheme, iJ’ 
applied at every x, converges boundedly almost everywhere to some function u(x. t). 
Then u(x, t) is a weak solution of (2.1) with initial data (2.2). 

The convergence theorem follows. 

4. CONVERGENCE OF THE DIFFERENCE SCHEME 

We now state and prove our main theorem. 

THEOREM. Suppose that u,, lies in L ccI (R) n B V,,,(R) and that the condition: 

Sup 1% < 1 (4.1) 
k 

is satisfied. Then the family of approximations {uAj generated by the d@erence 
scheme (2.15) from initial data (2.8) contains a subsequence iuJ } which converges in 
L&JR x (0, T)) towards a weak solution of (2.1), (2.2) as Ax,: 0. 

Proof. The proof is in three main parts. First we show that the piecewise constant 
function (2.7) generated by the scheme of Section 2(b) is uniformly bounded and of 
uniformly bounded variation in space and time. Then we demonstrate that from the 
family of such functions we can extract a sequence convergent in L:,,(IF x (0, r)). 
Finally, we prove that the limit function is in fact a weak solution of the problem 

The scheme may be written in the form 

Uk = uk + tk+L,2$k+1!2 + ik-,:2@k-,;27 

where tk+,,2, ckpI,‘Z are given by 

i 
’ + @k+ l/Z - bk- 1,2)/#k- I,2 9 I’kf I/‘2 > o 

t-k-$/2 = 0, 

( 

Vk-l? < 0 (4.31 

1, V k+,.‘2 < O, vk-L,2 > o 

i 

0, I’kf Ii2 > o 

tk, I!2 = 1 - @k+ I,2 - bk- 1:2)/Q)k+ ,/2 3 vk* I;2 < 0 (4.4) 

1, VA+ ,/? < 0, vk-,,2 > O- 
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(Note that each term ~.$+i~~#~+i,~ and [k-1,2#k-,i2 in (4.2) may generate a scheme 
with three-point support. Generally one term or the other will be zero: only at a 
shock will both be non-zero.) 

Using the definitions of (x, p9 p’ in (2.13) and (2.17), these become 

I 

1 + cB;+u2 -Pk-Ii.21 (rk-1/27 vki- I,‘? > o 

&-I,‘2 = O, L’k--1/2 < ’ 

1, vk+1!2 < O, v/i-lQ > o 

i 

03 $‘k+ Ii’2 > o 

r k+l!?= 

! 

’ +~~~1.12-Pk+Li2)Clk+1,‘2. ‘k+ Ii? < 0 

1, 

We have from (2.18) and (2.13) the bounds 

vk+l/? < 0, v&-l/2 > 0. 

-2 < c/4* 1!2 - P,,,2) < 2 

and 

O<a kf 112 <i 

from which we deduce, using (4.5) and (4.6), that 

Consider now the expression 

-~k+l,Z1’k+lj2 + ik--1,2VkL,;2 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

which occurs in the inequalities (3.3) of Lemma 2. If vkf ,,,2 are of the same sign we 
have (taking the positive sign as an example) 

-<k+l,‘2vktl/2 + ik-1,2”k-1,2 = (I + @;+I/2 -Pk--ljZ) ak&,!2) ‘k-l/Z 

G (1 + 2% I,?) Vk- l/Z (from (4.7)) 

= t2 -k-i/d ‘k-l/2 

,<l (4.11) 

by condition (4.1). If vk+ 1,2, v~-,,~ are of opposite sign then there are two cases to 
consider. For an expansion wave, i.e., v~+~,~ > 0, 11~~~:~ < 0, then <k+I,Z = criPljZ =O 
so that trivially 

-rk+1,2Vk+li2 + ~k-1!2vkb1,2 < l, (4.12) 
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whilst for a compression wave (shock), i.e., b ‘k+ i;> < 0, l’,kpI;? > 0, (4.10) becomes 

-rk+1,2Vk+L..?+rk~1,.2~k-1;?=l’k-,,’2-I’kti~? 

<2 (4.13) 

by condition (4.1). 
Consider next the expression 

(ck+ Ii? - tkt ,;2> “k+ I.‘2 (4. !4\ I 

which occurs in the inequalities (3.6) of Lemma 2. From (4.5) (4.6) we have 

c -0 kt I,‘2 - if rkfliZ < 0 

tk+1/2=’ if rk+r;2 > 0 
(4.151 

so that using (4.11). we obtain 

(rk+1:‘2-rk+,,‘Z))?k+,.Z~ 1. (4.16j 

Now for the cases covered by (4.9), (4.11) and (4.12) we see that the conditions of 
Lemma 1 are satisfied, and hence that 

inf{uk_,,uk,uk+,}~Uk~supjZik~I,Uk’21k,I}. (4.17) 

For the case of the compression, represented by Eq. (4.13), the conditions of 
Lemma 1 are not satisfied: however, we are indebted to A. Y. LeRoux for bringing to 

our attention a direct proof of (4.17) in this instance, which may be found in [ 14 II 
Finally. by induction, we may readily deduce that 

Also from (4.9) and 

for all K > 0. 
Choose R > 0 and 

lbkl~P,Rx[O.T,~ G ~hhWW (4.18) 

(4.16) the conditions of Lemma 2 are met and hence 

r lu;,f;-u;+‘l< y Iu;Ai -2Q (4.19) 
Ikl<K Ikl<K+rz 

set K = [R/Ax]: then, using (2.3), (4.19) becomes 

< C(R + T//1.), (4.20) 

where C(R + T/l) is a constant depending only on the region .QR defined by 

QR = C--R, R? x (0, ‘0 (4.211 
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Summarizing, we have shown that Roe’s scheme generates the family of functions 
(uA(x, t)} (see (2.7)) with the following properties: 

(a) U&X, t) = u: in the rectangle I, X J, (see (2.6)). 
(b) uA(x, t) is uniformly bounded by ]] z&~(~), from (4.18). 

(c) ud(x, t) is of uniformly bounded variation in the x coordinate, from (4.20). 

Cd) uA(x, t) is of uniformly bounded variation in the time coordinate, since, 
from (2.14), (2.15) and (2.16), 

IU ;+I-u;:l~max{iu~+,-u,“I,Iu~-u~_,l), (4.22) 

so that, from (b) above there is also a bound on the time variation of u~(x, t). This 
completes the first part of the proof. 

Now, following Oleinik [7], let t = fm (m = 1, 2,...) be a countable everywhere 
dense set on the segment [0, T] in ~2,. By Helly’s Theorem, (see Section 3), on any 
straight line t = constant > 0 we can extract from { uA } a subsequence, converging at 
every point of this straight line as Ax--f 0. 

Hence on the line I = t, we extract a sequence (u, ,} from (Us}, then on the line 
t = tz we extract from { uA, } a subsequence ( uAZj and so on. Then, by means of a 
diagonal process (see [8, pp. 301]), which consists of taking the ith element of the ith 
sequence, we can extract a sequence {u:} = {uii} (i + co, A, + 0) which converges at 
every point of the family of straight lines t = t, (m = 1, 2,...) for i + 03. 

We now show that {z&} is Cauchy in L’(8,), i.e., 

[ I Z&(X, t) - Z&(X, t)l dx + 0 as i, j-, 03, v t. (4.23) 
. III <R 

Since uA is constant on ((k - 4) Ax, (k + $)A) x ((n - 4) 1 Ax, (n + i) ,I Ax) we have 
u,(x, t) = u,(x, nL Ax), where n = [t//z Ax + j] and [y] again denotes the integer part 
of y. 

Since the set t = E, (m = 1,2,...) is everywhere dense we can choose from it a 
sequence (t,,) converging to t as m, + co. Setting n, = [t,,/iL Ax + 41, we have 

I u;<x, t) - uj,(x, t)l dx 

< jirltR I z&(x, n/i Ax) - z&(x? n,/Z Ax)1 dx 

+J 1 ujd (x, nA Ax) - z&x, n, 1 Ax)/ ckc 
ixl<R 

+- ! 1 z&(x, n,A Ax) - u$(x, n,A Ax)1 dx. (4.24) 
1x1 <R 
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The first term on the right-hand side of (4.24) is bounded by 

-s 
IkEK 

lu;: - u;q Ax 

since K = [R/Ax], which in turn is bounded by 

(4.25) 

writing n,, iz, for the minimum and maximum of nV n,, respectively. Now from (4.22) 

n*-I It- 1 

c c Iu;+‘- 

,kzK n, 

24Ax<2 c c I$+,-u;lAx 
n1 lki <K 

nz-1 

<2 x C(R+T/A)Ax (from (4.20)) 
n1 

< 2(n, - n,) C(R + T//z) Ax 

= (‘VI It - Ljl W + VA) 
-0 as t,.+ t. (4.26) 3 

Thus the first term on the right-hand side of (4.24) + 0 as t,s --+ t and the same is true 
for the second term. 

Since the sequence tmS has been chosen from the set t = t, (m = 1, 2,...) and since 
the sequence (~4: } is convergent on each line t = t, it is also convergent on f = t,,< 
and thus is Cauchy on t = t,,,?. Hence the last term in (4.24)+ 0 as r’- co, j- co. 
Thus we have proved (4.23) and shown that the sequence {u: \ converges to a 
function u(x, t) in L ‘(Q,). 

We have therefore obtained a sequence {zA~,~} from {uA j converging in L. ‘(Q,)? and 
similarly we may obtain, from (uAR}, a sequence (u:,_!} converging in L.‘(On, + ;j and 
so on. Then by a diagonal process (see above) we may obtain a sequence ‘,uy i R tm 
extracted from (uA} which converges in L:,,,(iF( x (0. Tjj to u(x, t). It is evident that 
u(x, t) E L”(IF x (0, 0). 

This completes the second part of the proof. 
it remains to show that u is a weak solution of (2.1) (2.2). To do this we rewrite 

(2.15) in conservation form, 

u”=u,+4(1 -Sk+iit )$k+,;.Z+$ +Sk-1,2)gk-,:.2+Sk+,~2bk+i.Z-Sk~i,?bk-, 2 

= Ilk + i@k, 1:2 + $kp 112) + sk+ 1;2 (b,, ,.‘2 - @,+ 1;2) - sk- l&--l;? - +$,- 1 2:: 

=Uk-~~(-t~+1-fk-l)+Sk+li2(~k+li2-~~k+I;?)-~k--l ?(bk-!;?-+bk-L.?j 

= uk-lkj[+(fk+, +fk) - (l/l) Sk+,:Z@k’l,Z - i#k+l:?)l 

- [;(h -fkp I> - (lln> Sk-l,12(bk&l:2 - +$k- L’d1 i.3 
(4.27: 
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Note that 
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uk = uk - A(&+ ,/I - h&l/?)’ (4.28) 

h k+l,‘Z =h(Uk+?,***, uk&d 

= %fk+ 1 + fk> - (l/l) sk+ L&k+ I./2 - %k+ ,d (4.29) 

h(u,..., u> = a-(~, + f(u)) - 0 

=f(u)* 

Thus the scheme satisfies the conditions of the Lax-Wendroff Theorem (see 
Section 3) and, since u~(.x, t) converges boundedly to U(X, t), this theorem shows that 
u(x, t) is a weak solution of the problem (2.1), (2.2). 

This completes the proof of the convergence theorem. 

5. ENTROPY CONSIDERATIONS 

Although we have shown convergence of Roe’s scheme (2.15) to a weak solution 
of the problem (2. l), (2.2) such a solution is not unique [ 12, 7,9], and the scheme 
may in rare situations generate non-physical or entropy-violating solutions. One 
example is when the initial data are such that 

(5.1) 

for some j and f(u) = tu’ in (2.1) (the inviscid Burger’s equation). Then, since 
f, = 4 V k Roe’s scheme leaves the initial data unchanged because it relies on 
differences off,‘s to compute the increments, i.e., 

even at the discontinuity. (It should be noted that it is also this same property of the 
scheme that gives sharp steady shocks.) 

It is apparent, therefore, that any modification to the scheme that will enable it to 
disperse such entropy-violating solutions as (5.1) will need more information than 
just the nodal flux differences. One approach [9] is to regard the zero increment 
@j+ I:2 in the cell Ij+1,.2 as being due to the cancellation of left-moving and right- 
moving increments within that cell. 

By choosing a suitable value [ 13, 9]? intermediate to uk and ilk-r, it has been 
found possible to define such left-moving and right-moving increments [9]. 
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bL 

time t+Af* * 

time t I 
'k-1 'k 

FIG. 3. Modified second-order scheme. 

Corresponding left-moving and right-moving transfers can then be constructed,leading 
to a monotonicity-preserving second-order scheme which disperses entropy-vi.oiating 
solutions. Except in entropy-violating situations, one or other of the left- and right- 
moving increments is zero and the scheme reduces to Roe’s scheme (2.15). -4 
diagram of the scheme is given in Fig. 3. 

This modified scheme has been shown [9] to converge to a weak solution. 

6. CONCLUSIONS 

We have proved that the approximations generated by Roe’s scheme (2.15) 
converge to a weak solution of the problem in Section 2 and have indicated a way in 
which the scheme may be modified to disperse entropy-violating shocks. 

Note that (4.17) demonstrates the important property of monotonicity preser- 
vation, that is, monotone data remains monotone after a time step. It is this property- 
of Roe’s scheme [3] which has been found particularly valuable in eliminating 
unwanted oscillations in shock problems: it is here proved for the first time for 
general f(u). 
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